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Abstract

This paper discusses several numerical approaches
for solving problems arising in optimizing trajectories.
The basic concepts underlying the grad: nt method, the
second variation method, and a generilized Newton-Raphson
method are presented in a very elementary manner by con=
sidering an ordinary minimum problem with a side con-
straint. The results obtained when the basic concepts
are extended to the variational problem and the computa-
tional algorithms are then discussed. Finally, in the
_ concluding remarks, advantages and disadvantages of each
i method are reviewed, and a comparison is made between
- the second variation method, which might be considered a
) direct method, and the generalized Nevwton-Raphson method,
normally considered as an indirect method. Part II of
this paper provides an application of the three methods
to a specific problem.

ADG15154

Introduction

The numerical methods for the solution of optimiza-
tion problems have in the past taken two primary direc-
tions: the direct approach and the indirect approach.

In the direct approach, which is usually associated with
a steep descent technique, the constraining system dif-
ferential equations are satisfied and an iteration made
on the control signals such that each new iterate im-
proves the function to be minimized. The indirect ap-

proach involves the development of an iterative tech-
nique for the solution of the system and Euler-Lagrange -
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COMPUTING METHODS IN OPTIMIZATION PROBLEMS

differential equations. Advantages usually associated
with the steep descent techniques are that .onvergence
does not depend upon the availability of a good initial
estimate of the optimal trajectory as a starting point,
and that the techniques seek out relative minima rather
than merely functionals which are stationary. The main
disadvantage associated with the steep descent techniques
is that in many practical applications convergence slows
as the optimum trajectory 1is approached. In contrast,
the indirect methods usually exhibit good convergence as
the optimal trajectory is approached if the method con-
verges at all. However, a good initial estimate of the
optimal trajectory may be needed to ensure convergence.

Part I of this paper presents a brief review of the
first and second variation theory as associated with the
steep descent methods. This is followed by a discussion
of a generalized Newton-Raphson method as applied to the
solution of the system and Euler-Lagrange equations.
Finally, a comparison between the second variation method
and the generalized Newton-Raphson method is made which
suggests that the second variation method is equivalent
to a special case of the generalized Newton-Raphson
method.

Both the steep descent methods and the generalized
Newton-Raphson method have been discussed in detail by
the authors and others in previous papers, see (1)
through (8). Here, the purpose is to revicw basic con-
cepts. This can best be accomplished by considering an
ordinary minimum problem with a single side constraint
and then presenting the results derived in the above ref-
erences when the theory is extended to the variational
case.

Part II of this paper discusses the actual compu-~
tational procedures using the gradient method, second
variation method, and the generalized Newton-Raphson
method to solve a specific problem.

Problem Formulation

The usual Mayer formulation is employed for the
variational problem. Given a system of first order dif-
ferential equations

ki = fi(xl’ sevs XKoo Yis o ees Ygo t) (1)

find a solution of this system of equations which satis-
fies certain specified initial and terminal conditions
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and minimizes P, a function of the final unspecified
terminal conditions and the terminal time.

P = P[xm+ s wees X s tf] (2
£ £
The =X wvariables are referred to as the state variables
and the y wvariables as the control variables. Both the
state and control variables may be subject to con-
straints; however, in this discussion we will deal pri-
marily, though not exclusively, Ulth the case where such
constraints are absent.
It will be assumed for convenience that initial

values of xj are fixed at ¢ty

X, (to) io , i=1, ..., n (3)

as well as the first m of the terminal values

xi(tf) = §i ’ i=1, ..., m (4)
£ :
The final time t§ may or may not be specified. In the
gradient method it will be convenient to reformulate the
problem such that all of the final state variables are
open. This is done by employing a penalty function ap-
proximation:

1
P (x1 3 eees X tf) = P(xm+ 5 evesy X_ tf)

£ Tg £ Bg
(5)
m
1 2 4 2
+ 1 3' K.(x, -x.)
L ] Jf £
j=1

A minimum of P' is now sought without requiring the
terminal values of the first m state variables to sat-
isfy Eq. (4) exactly but rather paying a "penalty" for
deviations. As the Ky becomes large the trajectory
which minimizes P' 1is in some sense close to the tra-
jectory which minimizes P with the final values of the
first m state variables specified.

At this point it is advisable to digress from the
variational problem and examine an orxrdinary minirmum prob-
lem with a subsidiary constraint. Let us consider the
problem of minimizing a function of two variables con-
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strained such that a second function of the variables is
equal to zero.

Min f(xl, x2) subject to g(xl,xz) =0 (6)

We further assume that both £ and g and their first
and second partial derivatives exist for all finite val-
ues of x; and Xy. Expanding both £ and g in a

Taylor series and retaining all terms up to and including
second order gives:

f(xl, XZ) = Ek;l’ ;é) + E% Axl + fx AX

1 2 2
(7a)
= 2, = - 2
+ 3 £ AXT + £ AX Ax, + L £ AX
xlx1 1 xlx2 172 x2x2 2
g(xl, xz) = g(xl, xz) + gxlel + gszx2
(7b)

- 2, = - 2
+ % L AxT+g AXAX,+ 3 g AX, =0
gXlA1 1 X%, 1772 X, %, 2
where the barred functions are evaluated at a specific
value of x; and x3. We choose x; and Xy such that
the constraint g(xy, x3) = 0 1is satisfied and solve for

Ax] in terms of Axj vretaining first and second corder
terms.

- 2
| 5, ”
D S b 1, I
Axl = E }gXZsz + 3 gxlxl < E ‘> sz
%1l X1
&)
g
X
2 2 - 2
- ax, + 3 og Ax
XX, < 5x 2 2x2 2
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It is tacitly assumed that Exl # 0. An expression for

the change in £ is then obtained by substituting Eq.
(8) into Eq. (7a).

£

X
— — — _ _ _-l-_. —
f(xl, XZ) f(xl, x2) = Cfxz Ex gx2> Ax,
1
ry -2
F (g % ) 22
_or ©)
£
X
1~ 2 2
~-(£ - = Ax
(xlx2 gx1x2> gx 2
1
E-x
1 —
+ 3 (£ - Ax
( X,%, 5, gx2x2 2
1

Therefore, sufficient conditions for ?(}?1 » -122)

to be a minimum of £(x7, xp) subject to g(x3, X9)
equal to zero are

%2 2 1
1
— —.2 — =
1 /¢ fx - gx2 fx]. - 2
(i) z (£ - ==-(£ - —_= —
C %1 g"‘1"1> g, (Xlxz g g"lxz) g,
1 1 % 1
£
_ x5 _
1 - —
+3 (£ . ~= gxx2>>0 (10)
272 gx1 2



COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Of course the conditions are symmetric with x; replaced
with xp and xj vreplaced with x;j.

In the classical theory, the constraint
g(x1, x9) = 0 is adjoined to f(x1, Xx7) by means of a
Lagrange multipliex

3(xps %y M) = £(xq, %)) + Ng (%), X)) (11)
and S 1is expanded in the neighborhood of some point

Xy, X2, and N considering all variables to have inde-~
pendent variations.

S(Xl’ Xys A = S(xl, X, A) + leAxl + szsz + gAA
+173 sz +3 AR A%, + 3 s sz (12)
X% L XX, 1772 x2x2 2

+ (gx axy + g sz)AA
1 2
Sufficient conditicns for §(§1, Eé, 7b to be a minimum

of S(xj, x9, M) subject to g(xy, Xp) equal to zero
are

(1) le = fxl + %gxl =0
(ii) sz = fx2 + %gxz =0
(iii) gxlel + gszxz =0 (13)

. 1/ 2 - -
(iv) 3 (fxlxl + f\gxlxl ax] + Cfxlxz + %gxlxz ) ax, A,

7 2= 2
1
+ 3 (fxzx2 + Agxzxz sz >0

These conditions are exactly equivalent to the suffi-
cient conditions given in Eqs. (10i) and (10ii). Fur-
thermore, it should be emphasized that S 1is merely

6
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stationary with respect to X;, X5, and A and a mini-

mum only when g(xy, X3) 1s constrained to be equal to
zero.

Gradient Techniques

The basis of the steep descent or gradient tech-
niques is to search out the stationary value of S by an
effective numerical iteration method. To complete the
analogy between the ordinary minimum problem and the
Mayer formulation of the variational problem either x
or X7 1is chosen as a control variable. Although Eq.
(12) was used to determine the sufficient conditions for

£(x7, X)) to be a minimum with g(xj, X,) = 0, the ex-
pansion is valid for any value Ei, §é, and A and need .

not be at a stationary point of S.
In the gradient method initial estimates of xj,
X9, and A would be made that satisfy g(xy, xjp) =

and Axj, Axp, and AN determined from first oxrder

terms in Eq. (12) such that AS would decrease. Al-
though usually one would not likely use a gradient method
to solve an ordinary minimum problem of the type dis-
cussed, we will indicate how the computational algorithm
might proceed so that we may see the analogy with the
variational problem.

Let us assume that =X, plays the role of the con-

trol variable. An initial guess is chosen for x3, X,
and A such that g(x;, x9) =0 and le = 0. This

guess will be designated by the barred quantities in Eq.
(12) ._ We can then be sure that AS is negative if Axy

and Sx2 are of opposite sign.

AS = S(x;, X5, N = '§(§1, ;2, N = EX AX (1%)

2 2

However, the magnitude of AxX) must be small enough to
assure that the first order theory is wvalid. One could
view the problem as one of minimizing AS subject to a
constraint on the magnitude of Ax, if the constraint
were known.

s' = AS+'Y(Ax - = +"((AA - 1) (15)



o R ~ &Y.

COMPUTING METHODS 1 OPTIMIZATION PROBLEMS

Here, v acts as another Lagrange multiplier for a con-~
strained auxiliary minimum problem. Solving for the sta-
tionary values of S' gives

px, = = == , (16)

The magnitude of Ax9 1is still not determined, for vy is
unspecified. A one dimensional search is normally made
varying v and calculating S(xy, x;). In this simple
problem one could just as well have performed the one
dimensional search directly on AX9, however, in an n
dimensional problem Eqs. (15) and (16) become

n n
ro 2 _
s = z sxizxx].L + (Z axg K2> 17)
i=2 i=2
§.X
Axi=-5$ , i=12, ..., n (18)

Foxr the n dimensional pxroblen we can appreciate how the
gradient method received its name. If we consider the
Xij, L =2, ..., n components of an n-1 vector, the

Ax vector is in the negative gradient direction of S.

These concepts as applied to the variational prob-
lem have been discussed in detail in (1) through (&), ard
therefore, only the results are summarized here. The La-
grange multipliers become functicns of time which obey
the system of differential equations

n Sf g
A, = - —L =\ _2®_ . _ )
Ai - E: %j Bxi ’ Ai(tf) = axi , i=1, ..., n (19
j=1
- o5 5
For convenience the function H(x, A, y, t) 1is defined:
n
e N
HGs A ys 8 = ) NEi Gk, y, 0 (20)
i=1
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where
= ~
X = Xl, ooy Xn
>
M= A, e N (21)
o B
Yy = yl’ ce ey YZ

The superscript denotes the transpose of the vector.
Equations (1) and (19) can then be put in a canonical
form:

. _ OH_ o~
X, = x.(ty) = x,
i Bki ’ i*0 i
5 . (22)
Ai -7 x, >N (tf) = dx,
i i
From first order theory we may write an equation for
—_
t
P (xf, tf)
i
2 1 2 aH
P (xf, tf) =P (xf, tf) + ayk By, dt
%o
- - _,- (23
BP = oP_
Ll e f &, v tf) + 3¢ |0t¢
lf £

Necessary conditions for x(t) to be an optimum trajec-
tory and y(t) the optimum control are

M

=0 (24)
Byk
and if final time is open
. - - —_
dr_ 9F P _
de lt—E axl £, (X: y: f) + atf 0 (25)
=tg £
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—

In addition, of course, x and A must satisfy Eq.
(22).

As in the case of the ordinary minimum problem the
barred variables in Eq=+(22) need not be optimum trajec-

tories. Therefore if X is a nonoptimum trajectory, the
gradient method provides aqeeffective numerical iteration
technique for ch0031ng a 0y wvector to decrease the
value of P (xf, tg). Just as in the ordinary minimum
problem we now con31der an auxiliary minimum problem with

a constraint on 6y adjoined to ensure that the first
order theory remains valid

N P'('Qf, £ - P'(;f, )
r"E'f (26)
+ z Yk{ wk(t)ﬁyi dt - ai}
=1 .Jt
0

where wp(t) 1is a weighting function which in many cases
is given the value of unity. A constraint could also be
imposed on ©&tg; however, in practice the determination
of ©®tf camn best be accomplished in a different manner
which will be explained when the actual computational
procedure is discussed. The solution of the auxiliary

minimum problem leads to an equation for &y as a func-
tion of time

1 dH
gy, = = ~ 27
k ckt,k(t) Byk

As in the ordinary minimum problem the undetermined con-~
stants ci appear and are found by an independent search

procedure. For example, if there is only one control
variable, P' would be calculated for several values of
¢ and then a polynomlal fit made to determlne the value
of ¢ which gives the least value to P'.
The actual computer algorithm might proceed as fol-
lows:
1. Select an initial control time history as a
first estimate and nu. »rically integrate the
system equations (1).

10
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Terminate the trajectory calculatlons at the
time tf deternined when P' <reaches a min-

imum.
Integrate the adjoint system backwards using
— 1
terminal values determined by ?\i (tf) = gi
i
'

During the backiwards_integration calculate

_ 1 oH
by, (£) = c, v, (£) 9y’

Integrate the system equations forward with
Yk = Yk + By £for several values of ¢y and

evaluate P’ (;:)f, tf) again terminating the

o 5 ar’
trajectory when 5 — = 0.

dtg
Using a curve f£itting technique find the best
values for ci and use this value to determine
the next estimate for yi: yx = yk + dyk. Re-

turn to step 1 and repeat.

This procedure has proved quite successful in the
Several variations of the method are also used ex~

tensively.
variables a more general expression derived from the Pon-
tryagin Maximumm Principle, (9) and (10), is used for P'
in place of Eq. (23).

If constraints are imposed on the control

-

| B d —T  — —
P (Xf, tf) =P (Kf’ f)

t

, £ - 5 - -5 o o
+ {n@, X, J+5y, £) ~HE, 1, 3, £) }dt
L)
- 2 2 BP
{H(xf, o T T * }6tf (28)

Eqv..at:.on (27) is then replaced with the criterion that

A, y + 6y, t) + = 'vkﬁyi be a minimum within the
k=1

admissible range of the contxrol variables.

11
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Although a quadratic constraint was used to assure
that the new trajectory was neighboring to the estimated
trajectory, many othor constraints could also be used.
One that is particularly useful when the optimum control
is "bang-bang" or on-off is an integral absolute value
constraint. In this case Eq. (27) is replaced with the

- o > -

A A )/
criterion that H(x, A, y + &y, t) + = v.|0y, | be a
k=1 k' 7k

minimum while satisfying the constraints on the control

variables, y =y + 8y. It is easily seen that when the
control variable 6y, appears linearly in H that every
intermediate control estimate will be "bang-bang" or on-
off. (The singular case is excluded where the coefficient
Yk in H is identically zero over a finite interval of
time.) The constants vyi are determined by an inde-
pendent search as before.

Another variation of the gradient method is dis-
cussed ig g%) ind referred to as the Min H method.

—~ -
Here H({E, A, ¥ + by, t) is minimized by the choice of
6? satisfying any constraints that might be imposed on

Y. 1In place of the rather arbitrary absolute value and
quadratic metrics previously used to ensure neighboring
trajectories we set

Yy = Yy + akéyk 29

and an independent search is made as before to cetermine
Q-

When constraints on the state variables are pres-
ent some success has been experienced (L1) when addi-
tional penalty function terms are added to the function
to be minimized:

n

1 —>
P =P +z B U_ple;(x, ) 1de (30)

o

whqge U,y 1s the Heaviside step function and
gj(x, t) < 0 the state constraints. The constants Bj
are allowed to approach infinity as in the case when

12
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penalty function terms are used in place of satisfying
terminal end conditions.

The principal advantage of the gradient method is
that convergence is not contingent upon a good initial
estimate of the trajectory. One is assured that the
value of the function to be minimized is decreased in
each succeeding iteration. There are three principal
disadvantages of the method. First, the convergence,
although usually relatively good in the beginning of the
iterative sequence, often deteriorates severely as the
optimum trajectory is approached. Second, the penalty
function method required to solve problems with specified
terminal conditions introduces arbitrary constants which
are required to be "large" (certainly a relative measuxre)
at least for the final iteration. If the constants are
chosen too large at any point in the iteration cycle, the
new control will tend to improve the specified terminal
values without much weight being placed on improving the
actual function to be minimized. If the constants are
too small the specified terminal values will not be sat-
isfied. Thus in practice, the success of the method de-
pends to an appreciable extent upon past experience in
making proper choices for the arbitrary constants asso-
ciated with the penalty function terms. Third, regions
of severe irregularity sometimes develep in the control
variable functions. In extreme cases these are never

smoothed out,

Second Variation Method

A natural extension of the gradient techuniques
which come from first order theory is a thecry which
would include second order terms in the expression for
the function to be minimized. Let us returxn to the or-
dinary minimum problem and the expressicn for
S(x1, X9, M) given in Eq. (12). Assuming, as before,
that xj; and x, satisfy 3z = 0 we treat the auxiliary

problem of finding the stationary value of S consider-
ing Ax;, AX,, and AN as independent variables:

s, + SX % Axl + SX % sz + By AN =0

*1 1*1 1%2 1
S +S_ _AMx, +S. _Ax,+g AN=0 (3L
x2 xlx2 1 x2x2 2 x2
g A%, + g AX =0
x1 1 gxz 2



COMPUTING METHOUS IN OPTIMIZATION PROBLEMS

One could also view the problem as that of finding the
minimum of S(xj, X3, A) considering A fixed and a

constraint adjoined which requires By Axy + gy Axy = 0.
1 2

In this case the AM would be viewed as another Lagrange

multiplier. A step size constraint may also be required

as in the first order theory to ensure that the second

order theory is valid. Then in Eq. (31)

EX % - S*{ X + v
171 171
- - (32)
S ) + v
X2%9 X9%9

It should be noted that Eq. (31) is a linearization of
Egs. (13i) and (13ii) and the constraint equation
g(x1, x9) = 0.

In the variational problem we will first consider
the case for which the penalty function technique is used
in place of satisfying terminal conditions exactly. The
penalty function terms will then be removed and the ter-
minal conditions satisfied exactly. The actual deriva~
tion of the equations is quite involved and therefore we
swmarize the vesults derived in (5).

N

1

2= 2=
b%; = FYVE O, o+ a§.§§“ Ve o (332)
j=1 L3 el LK
6xi(0) = 0
n 2
2= 2=
S 3°H ) 3°H
o Bxiax; 6xj Z ax.ayk oY
j=1 3 k=1
n
o A (33b)
ox,dA, j
j=1 ]

14
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n 525' 625'
-\ _ = i
s (e = ) Shoe MxyEp) ¥ St o% Otg
=1 Jf ‘¢ £
Axi(tf) = 6xi(tf) + xi(tf) bt¢
AN (ep) = axi(Ef) + Ki(tf)atf i=1, , n
_ n 9—
OH d°H
oL 4 5%, + == B,
Byk Z Bykaxj j z Byka ?\j i
j=1 =1
£
+ 2 oy, =0 k=1 £
z aykay Is P o
_ S
s=1
and the following equation evaluated at Eé
n —
) aP — —
z; X, f +. E: dx Bx fiij(tf)
i=1 'f i,3=1 ‘£ If
n _ - p/ n -— a'.-
opP = v _OP i =
) s ED ) ) E 5y, ° k(g
i,j=1 *£ JIf k=l i=1 £ °f
n - n
= Jf 2=
2P %hi _o°p
) St e T ) 3 st hi°
i=1 £ i= £
n
y 2
v 9P - fd
+ ) . 3ty ax, (tg) + N 9
=1 £ t

15
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where

ry, (€)= ey + ;kﬁtf

These equations, as we might have anticipated from the
analysis of the ordinary minirum problem, are a lineari-
zation of the necessary condition for a minimum as de-
rived from the first order theory. Again, an integral
ccep size constraint may be required for Sy in which
event the diagonal terms of the array (BZH)/(aykéyS)
would have positive constants added to them.
The actual computational procedure might procced as
follows:
1. Select an initial control time history as a
first estimate and numerically integrate the
system equations (1) as in the gradient method.

Terminate the calculation at time Ef deter-
mined such that (dP')/(dtg) = 0.

2. Integrate the adjoint system backwvards using
terminal values dctermined by

Ki(zf) = (BP')/(BXif) and store the initial

values of M (tg).

3. Generate a partitioned transition matrix for
the linearized syst 2 and linea:ized adjoint
system by n simultaneous integrations of
linearized systems with oae of the 57 (0)
equal to 1 and the remaining TA(0) equal to
zero for each incegration. The &xy(0) are
all equal to zero. The homogeneous part of the
control law as obtained from Zq. (33f) is sub-
stituted in the linearized systems equations
for the calculation of the partitioned transi-
tion matrix.

4, The linearized system and adjoint system are
integrated once again for the inhomogeneous -
part of the solution due to the term
(BH)/(Byk) in the control law. For this in-
tegration all the ©&Xj(0) are equal to zero.

5. By linear algebraic operations the &3 (tg)

are determined so as to satisfy Eqs. (33c),
(33d), (33e), and (33g).

6. Another integration of the combined systems is
performed with these values of ©&A;(tg) and

16
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dyyx calculated and added to yy. Return to
step 1 and repeat the process.

The process continues until the decrements in P'
become small. The penalty function technique is then
dropred in preference to satisfying terminal conditions
exactly. Equations (33) are modified appropriately. The
Axl(tf) for the first m state variables are chosen to
make x;(tg + 5t) equal to xlf.

ax; (t0) = %if - x, (€ 5 i=1, ..., m (34)

Equation (33¢) remains the same for i = mfl, ..., n. Of
course the appropriate summation indices are changed
throughout Eq. (33) to be consistent with the payoff P
(the prime is dropped) being only a function of last n-m
state variables and final time.

The computational procedure is quite similar to the
procedure sketched earlier when the penalty function
technique was used. The adjoint system is integrated
numerically forward with initial values Kio + Shio R

i=1, ..., n of the preceding cycle. The modified
terminal conditions of the linearized system and adjoint
system are satisfied using linear algebraic procedures
as before.

One advantage of the second variation method is
that in the final stages of the computational procedure
the penalty function technique is no longer needed and
each successive approximation attempts to satisfy the
boundary conditions exactly. Thus the undetermined con-
stants assoclated with the penalty function terms are
eliminated. A second advantage is that in both phases
(penalty function and nonpenalty functions) the step
size is automatically determined thus eliminating the
independent search procedure needed in the gradient
methods. In addition to the two main advantages listed
above, most of the information necessary to perform the
generalized Jacobi test 1is available. Also, the matrix
elements for the second variational guidance scheme dis-
cussed in (12) are available as an end result of the
computational process.

The disadvantages of the method lie chiefly in the
additional programming effort needed to formulate the
computing algorithm. Hewever, the over-all actual com-
puting time is considerably less as discussed in (5) and

17
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Part II of this paper. In the present state of the art,
the method is applicable only to problems where the con-
trol signal is unbounded and continuous. Extensions to
bounded control variables which lead to an on-off type
control signal are being investigated.

Generalized Newton-Raphson Method

We will now proceed to discuss an indirect method
which on the surface does not appear to be related to the
steep descent techniques or variations thereof. The
method couched in the framework of functional analysis is
developed in (6) from an application of the Contraction
Mapping Principle. In essence, it is a generalization of
a Newton-Raphson method applied to the system and Euler-
Lagrange equations, and contrasts sharply with the more
usual indirect approach which has had such a dismal com-
putational past. For example, in the usual procedure
sets of initial conditions are successively mapped into
new sets of initial conditions and the differential con-
straints satisfied whereas in the generalized Newton=
Raphson technique a mapping is produced which transforms
sets of functions into improved sets of functions which
do not necessarily satisfy the differential constraints
and thus, as one might expect, yields a greater tenacity
of convergence.

Let us again consider the ordinary minimum problem
with a single constraint. The Euler-Lagrange equations
(13i) and (13ii) and the constraint condition which is
analogous to the system equations are repeated below.

S =f +N =0

%1 X1 gxl

S =£f <+ A =0 (35
%y ) g"2

Sy = g(xl, xz) =0

A Newton-Raphson approach to the solution of these equa-
tions might proceed as follows. Select an initial
X1, Xp, and M which need not satisfy any of the equa-

tions given in Eq. (35). Designate these values as
barred variables as before and expand Eq. (35) in a Tay-
lor series keeping only zero and first oxrder terms

18
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S. +S__Ax, +S_ _Ax, +g AAN=0

Xy X% 1 XX, 2 Xy

S. +S__Ax, +S. _Ax, +g AA=0 (36)
X, xlx2 1 x2x2 2 X,

g(xlxz) + gxlel + gszx2 | =0

Equations (36) would then be solved for Axy, Axy, and
AN and new values of xj, X9, and A determined.

x1 = xl + Axl

X, + Ax 37

2 2

A+ AN

»
N
|

>
]

The procedure continues until Eqs. (35) are satisfied or
until some measure of error has decreased sufficiently.

When this technique is applied tc the wvariational
problem, the following equations result.

. 3 = 320 - %
B =55t ) Seoom bz, + Shoy. oY (382)
* =t * k=1

(38b)

I
»e
)

"

AX. (tf) =

Ax; (£0) = axi(}?f) +§i6tf , i=1, ..., m (38c)
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_ . n 9= £ 9—
SN ) SRy _O°H - 9°H
g oh X, i E: 0x.0X, ﬁxj E: X, dy. ¥k
i 5=1 i3 k=1 I k
| (384d)
| n
i 2_
_ O H .
| . axia)\. 6?\j 5 L = 1: s I
=1
! _ 0 .
o - O P -
A =
Ak (eg) 3%, 1€ + ) Sk ok, A%5(tp)
£ =1 ' ¢
(38e)
2%, _
+ =— 5t
ox. ot £
i £
£
A7\i(tf) = 6?\i(tf) + ?\it‘)tf , i=mHl, ..., n (38f)
n n
Fo) 0"H ol |
St z ok, + =<2 A
y Oy, 0x. j Z Vi 0M. T ]
k j=1 k] j=1 k™ j
(38g)
2 ’—
o H
+ z 5y = 0 K, ..., &
ay ay s > 8 2
s=1 ks
& and
: . } ) ~
T _OP oP o P -
S BT ) Sm.ow. Eitx;(ep)
i=1l *f i,j=t tf If
(38h)
n = £ n R
= of = ok
oP i ~ OP_ "1
* 2 5xi ox, 0% (tf) +z z ox. oy. Ayk(tf_) 0
i,j=1 £ JIf k=1 j=1 £

evaluated at Ef,
been used in this f

The penalty function technique has not
ormulation. It should be noted that
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the initial estimates for trajectories or the Lagrange
multiplier time histories need not satisfy their respec-
tive differential equations.

A computational procedure might proceed as follows.

1. Analytically solve for Yk in terms of xj,
Aj, and t and substitute the control law
into the system and adjoint system equations.
Select a system trajectory and ajoint trajec~
tory that need not satisfy the differential
constraints, but that does satisfy the initial
conditions and perhaps, although not necessar-
ily, the specified terminal conditions.

2. Calculate a partitioned transition matrix for
the homogeneous linearized systems and adjoint
system as in the second variation method by
setting ©x;(0) = 0 and letting the ) (0)
take on unity values as before.

3. Solve the system and adjoint system again for
the nonhomogeneous part of the solutions.

4. Using linear algebraic relationships determine
the ©®A{(0) required to satisfy boundary con-
ditions in Egs. (38).

5. With these values for ©M(0) integrate both

9
linearized systems and add the ©&x(t) and
_gk(t) to obtain new estimates of X(t) and
AE) .

6. Return to step 1 and repeat.

Because of the additional degree of freedom given
by not requiring the trajectories or the adjoint system
to satisfy the differential constraints there are many
variations for the computational procedure. In {(6) some
discussion has been given to sufficient conditions for
convergence using as a metric the maximum deviation be-
tween the approximate trajectory and the actual trajec-
tory. However, in practice it has been found that_the
region of convergence is somewhat larger than that de-
scribed by these sufficient conditions. A few examples
of the numerical application of the Newton-~Raphson opera=-
tor technique are described in (13).

Conclusions

Several methods have been described for the numeri=-
cal solution of optimization problems. The gradient
technique and possibly the second variation wethod might
be described as direct methods while the generalized
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Newton-Raphson technique would no doubt be considered of
the indirect type.

The advantages of the gradient method and varia-
tions of this method are in its simplicity. The conver-
gence of the method is not contingent upon a good initial
estimate as a starting condition. It is assured that the
function to be minimized is decreased after each itera-
tion cycle. There is no difficulty in handling con-
straints imposed on tt control variables. Successful
results have also been obtained when constraints were im-
posed on the state variables by employing an integral
type penalty function. The major disadvantage of the
method is in the way specified terminal conditions must
be treated using penalty functions which introduce unde*
termined constants and often slows convergence as the
optimal trajectory is approached. In addition, the step
size is unspecified which also introduces additional con-
stants which must be evaluated by independent search
techniques.

Original motivation for the second variation method
was to improve the iteration technique and eliminate the
shortcomings of the gradient method. In the final stages
of the second variation method, the penalty function
technique is dropped in preference to satisfying speci-
fied terminal conditions exactly which improves conver-
gence properties of the iterative technique as the opti-
mal trajectory is approached. In addition, the step size
is inherently determined by the method eliminating the
need for evaluating undetermined constants by an inde-
pendent search as is required in the gradient methods.

As a by-product, the Jacobi test can be performed with
little additional computation and the matrix coefficients
needed for the second variation guidance are available
from the final iteration cycle. The over-all saving in
computer time seems to be in the order of 50 per cent, at
least for the limited experience available. The disad-
vantages of the method are that the computer program is
significantly more complicated and the method as it
presently stands is not directly applicable to the case
where constraints are imposed on the control signals.

The Generalized Newtcon-Raphson method is an in-
direct approach which iterates to a solution of the sys-
tem and Euler-Lagrange equations which have mixed bound-
ary conditions. An examination of the ordinary minimum
problem with a single side constraint, illustrates that
the significant difference between the second variation
method and the generalized Newton~Raphson method is that
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in the former the constraint is satisfied exactly while
in the latter the constraint is satisfied when the method
converges to the optimum value. However, both methods
systematically search out the stationary value of S.

One should be able to take advantage of the additiomal
degree of freedom available in the Newton-Raphson method
to improve the computing algorithm. However, in the sec-
ond variation method one can argue certain convergence
properties since a minimum of the function or functional
is being sought when the constraints are satisfied (at
least when the penalty function is used) rather than
seeking out merely stationary values of function or func-
tional as is done in the generalized Newton-Raphson
method. In summary, one might say that the generalized
Newton-Raphson method is a more general form of the sec-
ond variation method or conversely, the second variation
method is a specific approach to the generalized Newton-
Raphson method. This seems to be a common meeting ground
for a direct and indirect approach to the solution of op-
timization problems.

As is usually the case, it is difficult to state
dogmatically the superiority of any one method over
another. Each method should be used where its advantages
can be maximized and disadvantages minimized. A combina-
tion of two or more of the methods in practice might well
be used to advantage. For example, one might initially
use a gradient method or the second variation method with
penalty functions to satisfy terminal constraints so as
to be assured of convergence and then switch to the gen-
eralized Newton-Raphson procedure as the optimum trajec-
tory is approached to take advantage of the possible im-
proved rate of convergence of the latter method in the
terminal phase of the iteration technique.

In Part II of this paper the application of all

_ three methods to a specific problem will be discussed.

Some of the salient features of the actual computaticnal
procedures will be brought out and a comparison made of
actual computing time for the different methods.
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